

 easyAsPieDB User's Guide

 R&F Consulting, Inc.

easyAsPieDB User's Guide
	Copyright
	Overview	Purpose
	Features
	Awards
	Subscriptions
	Feedback Wanted!
	Request
	Encouragement

	Feature List
	How easyAsPieDB Defines Information	Types
	Value Types
	Choice Types
	Record Types	Composition vs. Reference

	Appliance Types
	Glyphs
	Formulas	Calculations
	Merges

	How easyAsPieDB Categorizes Information	Concepts
	Records	Record Types vs. Records
	Values

	Tables
	Collections	Subcollections

	Why Even Bother to Define Types?

	How easyAsPieDB Works With Information	Searches
	Templates	Templatability

	Reports

	How easyAsPieDB Presents Information	Views
	Views of Containers	Containers View
	Collection View
	Table View

	Views of Types	Types View
	Record Type View
	Record Type Fields View
	Record Type Field View
	Choice Type View

	Views of Records	Records View
	Record View
	Fields View
	Field View

	Views of Resources	Resources View

	How easyAsPieDB Reports Information	Reports
	Report Attributes	Fields
	Sum Variables
	Data Lines
	Groups (Levels 1-5)
	Group Footers

	Report Design	Detail Reports
	Summary Reports

	Report Styling

	Common easyAsPieDB Tasks	Sample “Contact” Record Type
	Create a New Record Type	Step by Step

	Create a New Table for a Record Type	Step by Step

	Create a New Record for a Record Type	Step by Step

	Support
	Copyright

 	
 Cover

 	
 Table of contents

Copyright

© 2012 R&F Consulting, Inc. All rights reserved. For a complete copyright notice, please see the end of this document.

Overview

Purpose

COMPLETELY customize the information this app stores and displays. (Well, cross-reference, search and create reports, too.)

A personalized to-do list. Business transactions you care about. A coin collection with images. Anything.

Features

Modern: Local first - works offline, no cloud necessary. • Encryption - your mobile data is secure from theft. • Reliable - based on SQLite, the most widely deployed database engine in the world.

A solid selection of basic data building blocks: Barcode (scan) • Number • Currency • Date • Distance (mileage) • Drawing (signature capture, signature cards, …) • Duration • Email • Image • iOS Contact (association) • Note (multi-line) • Password (hidden text) • Phone Number • Time • Text • URL (hyperlink) • Yes/No.

Supplementary data building components: Choice lists • Users Interface (UI) Glyphs (headings, line breaks, …).

Special-purpose Appliances: Location (GPS) • Time Group (time tracking) • Expense Group (expense tracking) • Mileage Group (mileage tracking).

Power-user capabilities: Calculations and Merges (user-defined Formulas). • Record cross-references - e.g., assign a known Employee to a new Time Card. • Record sharing - have multiple Records reference the same Record, e.g. multiple Orders under the same Customer. • Record composition - include Records inside other Records, e.g. an Address inside a Contact. • Record design - define Records as Types in a generic manner and reuse those Types when designing other Records.

Data Synchronization: Synchronize across multiple desktop (macOS) and mobile (iOS) devices. • Synchronize through the cloud over a wired or wireless network connection. • Zero-setup - just log your device into Apple iCloud and tap a button. • Efficient - synchronize only the data that has changed, incrementally. • Built-in data recovery - automatically detect local device or remote cloud account replacement and automatically consolidate data. • Multi-way sync support: synchronize any number of desktop and mobile devices through a single iCloud account.

“If you look at any kind of modern organization and you think, ‘What are the foremost tools of power?’ You will find that it is information.” (Ricardo Semler)

Awards

The product has been selected as an Honorable Mention (3rd-place) Winner in the “Productivity” category for an App Challenge by The Linux Foundation and Intel at the Mobile World Congress 2014.

Subscriptions

Unlimited storage capacity and features such as reporting, cloud document exchange or time, expense and mileage tracking are available for purchase in the “App Features and Local Data” subscription.

Data synchronization across multiple devices through the cloud is available for purchase in the “App Data Synchronization” subscription.

Try before you buy for as long as 14 days.

Feedback Wanted!

The easyAsPieDB project is an invitation to collaborative design. Please let us know of any suggestions for improvement you might have or any problems you run into.

Request

Please help easyAsPieDB: rate it in the App Store or write a short review for it. Thanks!

Encouragement

	Notice
	

	
	easyAsPieDB can be at first somewhat challenging to get to know in depth, but once understood often turns out to be surprisingly straightforward to use. Please make sure to take the time to learn the core concepts of easyAsPieDB information definition (“How easyAsPieDB Defines Information”) and information categorization (“How easyAsPieDB Categorizes Information”).

Feature List

Data Storage

	Feature

	• SQLite database: Atomic, Consistent, Isolated and Durable (ACID)

	• transactional integrity for data safety from memory shortage or power-loss

	• virtual storage implementation for rapid access and fluid scrolling through large databases on resource-constrained mobile devices

Data Security

	Feature

	• Apple iOS hardware encryption and device locking integration

	• proactive data protection monitoring

Data Design

	Feature

	• Records: object-oriented, compound Types (user-defined, reusable)

	• interface Glyphs (headings, line breaks, …)

	• Values: basic Types

	 • Barcode (scan)

	 • Big Number

	 • Currency

	 • Date

	 • Distance (mileage)

	 • Drawing (signature capture, signature cards, …)

	 • Duration

	 • Email

	 • Fractional Number

	 • Image

	 • iOS Contact (association)

	 • Number

	 • Note (multi-line)

	 • Password (hidden text)

	 • Phone Number

	 • Time

	 • Text

	 • Unsigned Number

	 • URL (hyperlink)

	 • Yes/No

	• Calculations across numeric Values (user-defined Formulas)

	• Merges across textual Values (user-defined Formulas)

	• Choice lists

	• Composition (containment) of compound Types

	• References to shared Records of a Type

	 • Type collaboration (e.g., assign an Employee to a specific Time Card, …)

	• special-purpose Appliances

	 • Location (GPS)

	 • Time Group (time tracking)

	 • Start Time

	 • End Time

	 • Duration

	 • Break

	 • Timer

	 • Expense Group (expense tracking)

	 • Quantity

	 • Cost

	 • Amount

	 • Mileage Group (mileage tracking)

	 • Odometer Start

	 • Odometer End

	 • Distance

	• a full-fledged data design environment on a mobile device

Data Categorization

	Feature

	• Tables of associated Records

	• a tree-like structure of Collections of unlimited depth

	• nested Collections (Collections inside Collections)

Data Visualization

	Feature

	• support for over 40 locales (iOS) for data input and display

	• customizable images for Tables

	• customizable images for Collections

	• inline thumbnails of Record content (Image, Drawing)

	• inline toggle of Record content (Yes/No)

Data Collection - User Interface (UI)

	Feature

	• multi-line (configurable) Record display

	• multi-level (configurable) Record sorting

	• quick-entry Field Views (Date, Time, Duration, …)

	• Record count -based (vertical) scroll within a Table

	• Record-by-Record (horizontal) navigation within a Table

	• in-list cross-management of Referenced (linked) Records

	• portrait/landscape orientation support

	• splitter (dual-pane) support (phablets, tablets)

	• side-by-side multitasking support

	• photo capture directly inside the application

	• support for auto-capitalization, auto-correction and spell checking

Data Collection - Never Enter Data Twice (NED2)

	Feature

	• deep-copy, compound Record duplication

	• reusable, persistent Templates (partial Records)

Data Review

	Feature

	• time-frame -based filters (date range: a day, a week, back/forward, …)

	• tag -based filters (pick list: referencing a particular Record of a Type)

	• text -based filters (a search bar: content matching)

	• reusable, persistent Searches with textual/numeric comparison operators (Starts With, Contains, Equals, Less Than, …)

Data Reporting

	Feature

	• Fields: column sets

	• Summary Variables: numerical value aggregation

	• Groups: row association criteria

	• Footers: Group summary lines

	• HTML CSS styling

Data Utilization

	Feature

	• publish-to-HTML

	• comma-separated values (CSV) export and import

	• backup and restore

	• cloud document exchange

	• open a Field with iOS (cross-application data sharing)

Data Synchronization

	Feature

	• synchronization across multiple desktop (macOS) and mobile (iOS) devices

	• synchronization through the cloud over a wired or wireless network connection

	• zero-setup: Apple iCloud authentication only

	• efficient synchronization of data that has changed only (incremental)

	• built-in data recovery: automatic detection of local device or remote cloud account replacement with automatic data consolidation

How easyAsPieDB Defines Information

Types

A Type gives a name to a piece of information, in order to describe it in a way that’s easy to understand and conceptualize. For example:

	instead of saying: “a number of dollars and cents with two decimal places”, you might simply say: a Local Currency

	instead of saying: “a piece of plastic from a financial company used for payments”, you might simply say: a Major Credit Card

	instead of saying: “a person with a first name and a last name”, you might simply say: a Contact

Every Type requires a Label (a textual name) to describe its purpose.

	Information
	

	
	In desktop PC terminology, Types correspond to file types and their extensions, for example .txt for “text” files (documents) or .jpg for “image” files (graphics).

Value Types

A Value Type is the most basic, indivisible building block of information. For example:

	Value Type Label
	Description
	Sample

	Barcode
	barcode information as text
	012345678901

	Big Number
	a whole number, positive or negative (64-bit)
	90210

	Currency
	a fractional number, positive or negative, with a currency symbol
	$29.95

	Date
	a date, without the time of day
	January 1, 2024

	Duration
	a time interval
	2 hours, 18 minutes, 5 seconds, and 100 milliseconds

	Distance
	distance in miles or kilometers (mileage)
	150mi or 250km

	Drawing
	an editable graphical sketch, a signature, etc.
	

	Email
	an email address
	info@rfcons.com

	Fractional Number
	a fractional number, positive or negative
	29.95

	Image
	a graphical image: a photograph, an icon, etc.
	

	iOS Contact
	a link to an iOS Address Book Contact
	

	Number
	a whole number, positive or negative (32-bit)
	90210

	Note
	multi-line text
	

	Password
	single-line, masked (hidden) text
	

	Phone Number
	a phone number
	1 800 437 7950

	Time
	the time of day, without a particular date
	9:00 AM

	Text
	single-line text
	

	Unsigned Number
	a whole number, positive, non-negative (32-bit)
	90210

	URL
	a hyperlink, such as a web site address
	http://www.rfcons.com

	Yes/No
	a true-or-false choice
	Yes

Only one Value can be specified at a time (or there can be no value at all).

Choice Types

A Choice Type is a collection of Alternatives. An Alternative requires a Label to describe what it represents. For example:

	Choice Type Label
	Description
	Alternative Label

	Major Credit Card
	a piece of plastic from a financial company used for payments
	VISA

	
	
	Mastercard

	
	
	American Express

	Expense Category
	a category assigned to an expense for reporting purposes
	Car Rental

	
	
	Entertainment

	
	
	Hotel

Only one Alternative can be selected at a time (or there can be no selection at all).

An important concept to understand is that you, the user of easyAsPieDB, have the freedom to define new Choice Types and the Alternatives that are valid for a particular Choice Type.

Record Types

A Record Type is the most high-level unit of information, usually something you need to keep track of. It is a collection of Fields. A Field has a particular Type (in other words, a Field is of a particular Type): a Value Type, a Choice Type, or even another Record Type. A Field also requires a Label to describe its purpose. For example:

	Record Type Label
	Description
	Field Label
	Field Type

	Contact
	a person with a first name and a last name
	First Name
	Text

	
	
	Last Name
	Text

	
	
	Date of Birth
	Date

An important concept to understand is that you, the user of easyAsPieDB, have the freedom to define new Record Types and the Fields that are expected within it.

	Information
	

	
	What is the difference between an Alternative (in a Choice Type) and a Field (in a Record Type)? When it comes to a Choice Type, only one Alternative can be selected. When it comes to a Record Type, all Fields can be specified at the same time.

	Notice
	

	
	Please note that a Type of a Field cannot be changed, once it has been assigned. You will have to delete a Field, discarding all data for that particular Field in all Records of the modified Record Type and create a new Field with a different Type.

Composition vs. Reference

An important concept to understand is that a Field in a Record Type can involve another Record Type. Thus, an important issue comes up: how should one Record Type include another Record Type, exactly? Directly, like a quotation inside a paragraph in a text document, or perhaps indirectly, like a reference to a footnote outside of a paragraph in a text document (at the bottom of a page)? There are two alternatives here: Composition (of another Record Type) and Reference (to another Record Type).

	Notice
	

	
	Composition vs. Reference is the only part about easyAsPieDB that is a little bit tricky. Take your time to try to understand this topic.

Composition

In Composition, a parent Record Type includes a child Record Type as an integral part of itself. For example, a Paragraph (a parent) including a Quotation (a child): it does not make sense for a Quotation to exist on its own, outside of a Paragraph (well, a Quotation would have to be on a Page or perhaps on a Cover, but it would have to be somewhere). Moreover, only one Paragraph can include the same Quotation, all other Quotations - even if identical - would have to be copies of the first one.

In Composition, a child Record Type (composed) is also called a Composed Type.

Reference

A Reference to a Record Type is an association of a parent Record Type with a child Record Type. A child Record Type is able to exist independently of a parent Record Type. For example, a Paragraph (a parent) indicating a Footnote (a child) through a superscript (a number that is set slightly above the normal line): a Footnote can exist on its own even without any Paragraphs at all. Moreover, multiple Paragraphs can point to the same Footnote.

In a Reference, a child Record Type (pointed to) is also called a Referenced Type.

Lifecycle

In Composition, the information for a child Record Type is created and discarded at the same time as the information for a parent Record Type.

In a Reference, when the information for a parent Record Type is created, the information for a child Record Type initially does not even have to exist and can be created and associated with a parent Record Type at a later time. The information for a child Record Type is able to exist independently and survives the information for a parent Record Type, if the latter is deleted.

Cardinality

In Composition, there is always one parent Record Type and one child Record Type (one-to-one correspondence).

In a Reference, multiple parent Record Types can reference the same child Record Type (many-to-one correspondence).

More Examples

Another example of Composition would be a Contact (a parent) that includes an Address (a child). It does not make sense for an Address to exist on its own, outside of a Contact (well, an Address would have to be a part of a Map Marker or perhaps a GPS Location, but it would have to be a part of something). There is always one Contact and one Address.

	Record Type Label
	Description
	Field Label
	Field Type

	Address
	a particular urban location
	Street
	Text

	
	
	City
	Text

	
	
	State
	Choice (of all valid states)

	
	
	ZIP
	Unsigned Number

	Contact
	a person with a first name and a last name
	First Name
	Text

	
	
	Last Name
	Text

	
	
	Mailing Address
	Address (through Composition)

Another example of a Reference would be an Order (a parent) that includes a Customer (a child). A Customer can exist on its own even without any Orders at all. Also, multiple Orders can involve the same Customer.

	Record Type Label
	Description
	Field Label
	Field Type

	Customer
	a buyer
	First Name
	Text

	
	
	Last Name
	Text

	
	
	Company Name
	Text

	Order
	an order for a buyer
	Purchase Date
	Date

	
	
	Order Number
	Unsigned Number

	
	
	Payee
	Customer (through a Reference)

	Information
	

	
	It is not possible for a Record Type to include itself (as a Composed Type) or reference itself (as a Referenced Type), either directly (as an immediate child Record Type) or indirectly (as a grandchild Record Type). A parent Record Type can work only with child or grandchild Record Types that are different from itself. Otherwise, it would copy itself or would keep pointing to itself forever in an infinite loop.

Appliance Types

An Appliance Type is really just a Record Type, but with some built-in special-purpose functionality that involves its Fields, such as mobile hardware integration (e.g., getting the current GPS location) or interdependent mathematical calculations (e.g., quantity, cost and amount). For example:

	Record Type Label
	Description
	Sample

	Location
	a geolocation (GPS) group with latitude and longitude
	lat: 40.753597, lon: -73.983233

	Time Group
	a time tracking group with a timer, start time, end time, duration and breaktime
	9:00 AM - 5:00 PM, 8h:00m, -0:45m

	Expense Group
	an expense tracking group with quantity, cost and amount
	3 x $0.99 = $2.97

	Mileage Group
	a mileage tracking group with odometer start, odometer end and distance
	45000 - 45075 = 75mi

Glyphs

A Glyph is the most basic, indivisible building block of easyAsPieDB User Interface (UI). It is concerned with how the information is formatted and presented, rather than what that the information really is in itself. For example:

	Glyph Label
	Description
	Sample

	Heading
	a textual header for a group of Fields
	Authentication (a logical grouping of a Username and a Password)

	Line Break
	a separator breaking up a long line into multiple ones
	Line 1

	
	
	Line 2

Formulas

See Also

	the “Record Types” topic in the “How easyAsPieDB Defines Information” section

A Formula is a custom recipe specified by a user that describes how to create a Field using information in other Fields within the same Record. A Formula is a collection of Elements. An Element is able to not only reference another Field, but also specify a mathematical operation, contain a predefined number, etc. Each Element of a Formula is processed one by one in the order that was specified by a user to produce a Value for a Field.

A Formula can be used for a Calculation or a Merge.

Calculations

A Formula for a Calculation can be assembled from the following Elements:

	
	Description
	Sample

	Field
	a numeric (non-textual) Field within the same Record
	Number, Currency, …

	Constant
	a predefined numeric (non-textual) Value
	17, $1.99, …

	Special Value
	a predefined numeric (non-textual) mathematical Value
	pi, epsilon, infinity

	Operator
	a mathematical operator
	+ (addition), - (subtraction), * (multiplication), …

	Symbol
	a separator, a grouping marker, …
	a comma, parentheses, …

	Mathematical Function
	a mathematical function
	avg, floor, max, …

	Trigonometric Function
	a trigonometric function
	sin, cos, deg2rad, …

The result of a Calculation is always determined as a fractional, numeric (non-textual) Value. However, the Field that is supposed to receive the result of a Calculation can be of any numeric (non-textual) Value Type, for example Number or Currency. The particular choice of a Value Type used for a Field with a Calculation is called a Result Type.

	Notice
	

	
	The particular Result Type chosen for the Field with a Calculation determines the final Value for that Field. For example, the Calculation of “four divided by three” results in the Value of 1.333, but if the Result Type for a Field is Number (non-fractional), the Value of 1.333 has to be converted to the nearest whole (non-fractional) number: 1, discarding the fractional part: 0.333.

Arithmetic Operators

A Formula for a Calculation can specify an Operator. An Operator is a basic mathematical operation. The following Operators are supported:

	Operator
	Description

	+
	addition between x and y (e.g., x + y)

	-
	subtraction between x and y (e.g., x - y)

	*
	multiplication between x and y (e.g., x * y)

	/
	division between x and y (e.g., x / y)

	%
	modulus of x with respect to y (e.g., x % y)

	^
	x to the power of y (e.g., x ^ y)

Functions

A Formula for a Calculation can specify a Function. A Function is a built-in mathematical or trigonometric calculation.

A Function always takes one or more Arguments (inputs) for the calculation it performs. Function Arguments are enclosed in parentheses. Each Argument is separated by a comma.

For example, the mathematical Function abs, “an absolute value of x” can be written as “abs(x)” and takes only one Argument: the quantity to calculate an absolute value for. The mathematical Function roundn, “round x to n decimal places” can be written as “roundn(x,n)” and takes two Arguments: the quantity to round and the desired number of decimal places.

	Function
	Description
	Written as
	Arguments
	Input
	Output

	abs
	an absolute value of x
	abs(x)
	the quantity to calculate an absolute value for
	-3
	3

	roundn
	round x to n decimal places
	roundn(x,n)
	the quantity to round and the desired number of decimal places
	1.333 and 2
	1.330

Mathematical Functions

The following mathematical Functions are supported:

	Function
	Description

	abs
	absolute value of x (e.g., abs(x))

	avg
	average of all the inputs (e.g., avg(x,y,z,w,u,v) == (x + y + z + w + u + v) / 6)

	ceil
	smallest integer that is greater than or equal to x

	clamp
	clamp x in range between r0 and r1, where r0 < r1 (e.g., clamp(r0,x,r1))

	equal
	equality test between x and y using normalized epsilon

	erf
	error function of x (e.g., erf(x))

	erfc
	complimentary error function of x (e.g., erfc(x))

	exp
	e to the power of x (e.g., exp(x))

	expm1
	e to the power of x minus 1, where x is very small (e.g., expm1(x))

	floor
	largest integer that is less than or equal to x (e.g., floor(x))

	frac
	fractional portion of x (e.g., frac(x))

	log
	natural logarithm of x (e.g., log(x))

	log10
	base 10 logarithm of x (e.g., log10(x))

	log1p
	natural logarithm of 1 + x, where x is very small (e.g., log1p(x))

	log2
	base 2 logarithm of x (e.g., log2(x))

	logn
	base N logarithm of x. where n is a positive integer (e.g., logn(x,8))

	max
	largest value of all the inputs (e.g., max(x,y,z,w,u,v))

	min
	smallest value of all the inputs (e.g., min(x,y,z,w,u))

	mul
	product of all the inputs (e.g., mul(x,y,z,w,u,v,t) == (x * y * z * w * u * v * t))

	ncdf
	normal cumulative distribution function (e.g., ncdf(x))

	nequal
	not-equal test between x and y using normalized epsilon

	pow
	x to the power of y (e.g., pow(x,y) == x ^ y)

	root
	nth-Root of x. where n is a positive integer (e.g., root(x,3) == x^(1/3))

	round
	round x to the nearest integer (e.g., round(x))

	roundn
	round x to n decimal places (e.g., roundn(x,3)) where n > 0 and is an integer (e.g., roundn(1.2345678,4) == 1.2346)

	sgn
	sign of x, -1 where x < 0, +1 where x > 0, else zero (e.g., sgn(x))

	sqrt
	square root of x, where x >= 0 (e.g., sqrt(x))

	sum
	sum of all the inputs (e.g., sum(x,y,z,w,u,v,t) == (x + y + z + w + u + v + t))

	trunc
	integer portion of x (e.g., trunc(x))

Trigonometric Functions

The following trigonometric Functions are supported:

	Function
	Description

	acos
	arc cosine of x expressed in radians. Interval [-1,+1] (e.g., acos(x))

	acosh
	inverse hyperbolic cosine of x expressed in radians (e.g., acosh(x))

	asin
	arc sine of x expressed in radians. Interval [-1,+1] (e.g., asin(x))

	asinh
	inverse hyperbolic sine of x expressed in radians (e.g., asinh(x))

	atan
	arc tangent of x expressed in radians. Interval [-1,+1] (e.g., atan(x))

	atan2
	arc tangent of (x / y) expressed in radians. [-pi,+pi] (e.g., atan2(x,y)

	atanh
	inverse hyperbolic tangent of x expressed in radians (e.g., atanh(x))

	cos
	cosine of x (e.g., cos(x))

	cosh
	hyperbolic cosine of x (e.g., cosh(x))

	cot
	cotangent of x (e.g., cot(x))

	csc
	cosecant of x (e.g., csc(x))

	sec
	secant of x (e.g., sec(x))

	sin
	sine of x (e.g., sin(x))

	sinc
	sine cardinal of x (e.g., sinc(x))

	sinh
	hyperbolic sine of x (e.g., sinh(x))

	tan
	tangent of x (e.g., tan(x))

	tanh
	hyperbolic tangent of x (e.g., tanh(x))

	hypot
	hypotenuse of x and y (e.g., hypot(x,y) = sqrt(xx + yy))

	iclamp
	inverse-clamp x outside of the range r0 and r1. Where r0 < r1. If x is within the range it will snap to the closest bound (e.g., iclamp(r0,x,r1)

	inrange
	in-range returns ‘true’ when x is within the range r0 and r1. Where r0 < r1 (e.g., inrange(r0,x,r1)

	deg2rad
	convert x from degrees to radians (e.g., deg2rad(x))

	deg2grad
	convert x from degrees to gradians (e.g., deg2grad(x))

	rad2deg
	convert x from radians to degrees (e.g., rad2deg(x))

	grad2deg
	convert x from gradians to degrees (e.g., grad2deg(x))

A Basic Formula

For example, the Formula “take a quantity and multiply it by two” can be written as “Fractional Number * 2” and can be broken down into individual Elements as follows:

	Element
	
	Description

	Fractional Number
	Field
	a Field within the same Record

	*
	Operator
	a mathematical operation (multiplication)

	2.000
	Constant
	a number

The Formula above would be processed in the following manner:

	Element
	Input
	Output

	Fractional Number
	0.123
	

	*
	
	

	2.000
	
	0.246

The input of 0.123 would result in the calculated output of 0.246.

An Advanced Formula

For example, the Formula “round a quantity to just one decimal place and add the number two to the result” can be written as “roundn(Fractional Number, 1.000) + 2.000” and can be broken down into individual Elements as follows:

	Element
	
	Description

	roundn
	Mathematical Function
	round a quantity to a number of decimal places

	(
	Symbol
	a grouping marker

	Fractional Number
	Field
	a Field within the same Record

	,
	Symbol
	a separator

	1.000
	Constant
	the number of decimal places for rounding

)
	Symbol
	a grouping marker

	+
	Operator
	a mathematical operation (addition)

	2.000
	Constant
	a number

The Formula above would be processed in the following manner:

	Element
	Input
	Output

	roundn
	
	

	(
	
	

	Fractional Number
	0.333
	

	,
	
	

	1.000
	
	

)
	
	0.300

	+
	
	

	2.000
	
	2.300

The input of 0.333 would result in the calculated output of 2.300.

Sample Formulas

	Formula

	sqrt(1 - (3 / x^2))

	clamp(-1, sin(2 * pi * x) + cos(y / 2 * pi), +1)

	sin(2.34e-3 * x)

	inrange(-2,m,+2)

	a * exp(2.2 / 3.3 * t) + c

	x + sin(2.567 * pi / y)

	2.123 * {pi * z} / (x + cos(y / pi))

	2x + 3y + 4z + 5w

	2 * x + 3 * y + 4 * z + 5 * w

	3(x + y) / 2.9 + 1.234e+12

	3 * (x + y) / 2.9 + 1.234e+12

	(x + y)3.3 + 1 / 4.5

	[x + y] * 3.3 + 1 / 4.5

	(x + y[i])z + 1.1 / 2.7

	(x + y[i]) * z + 1.1 / 2.7

	(sin(x / pi) cos(2y) + 1)

	(sin(x / pi) * cos(2 * y) + 1)

	75x^17 + 25.1x^5 - 35x^4 - 15.2x^3 + 40x^2 - 15.3x + 1

Merges

A Formula for a Merge can be assembled from the following Elements:

	
	Description
	Sample

	Field
	a textual (non-numeric) Field within the same Record
	Text, Email, …

	Text
	a predefined textual (non-numeric) Value
	“Today”, “@”, …

	Information
	

	
	Any Field can be used for a Merge Formula by being automatically converted to Text. For example, a Date Field will be converted to “day - month - year” (in the appropriate date format), a Time Field will be converted to “hour : minute” (in the appropriate time format), etc.

The result of a Merge is always determined as a textual (non-numeric) Value. The Field that is supposed to receive the result of a Merge has to be of the Value Type of Text. The Value Type used for a Field with a Merge is called a Result Type.

A Basic Formula

For example, the Formula “merge three Fields with custom separators in between” can be broken down into individual Elements as follows:

	Element
	Description

	Text
	a Field within the same Record

	@
	a separator

	Date
	a Field within the same Record

	,
	a separator

	Time
	a Field within the same Record

The Formula above would be processed in the following manner:

	Element
	Input
	Output

	Text
	Record #1
	Record #1

	@
	
	Record #1 @

	Date
	01/01/2024
	Record #1 @ 01/01/2024

	,
	
	Record #1 @ 01/01/2024,

	Time
	9:00 AM
	Record #1 @ 01/01/2024, 9:00 AM

The input of “Record #1”, “01/01/2024” and “9:00 AM” would result in the merged output of “Record #1 @ 01/01/2024, 9:00 AM”.

How easyAsPieDB Categorizes Information

Concepts

easyAsPieDB merges concepts well-known from the world of databases, such as Records, Fields and Tables, with concepts well-known from desktop computing, such as Collections. The notion of a Type (as described in the “How easyAsPieDB Defines Information” section) serves as “glue” across all those ideas.

Records

Just like a Record Type, a Record is also the most high-level unit of information, usually something you need to keep track of. It is a collection of Fields.

Record Types vs. Records

An important concept to understand is that a Record Type (information definition) is not the same thing as an actual Record (information content). The former represents what information can be stored in general; the latter represents the information that is stored in particular.

For example, if a Record Type (information definition) includes a Field labeled “Date of Birth” that is supposed to be a Date, then it is not possible for a Record (information content) to include, for example, Text for that Field instead:

	
	Description
	Field Label
	Sample

	Record Type
	information definition
	Date of Birth
	Date

	Record
	information content
	Date of Birth
	January 1, 1984

	Record
	invalid information content
	Date of Birth
	probably in nineteen eighty-four

If an explicit distinction has to made between the two, a Type of a Record is called a Record Type and an occurrence of a Record is called a Record instance.

Values

The information content that has been stored in a Field of a Record is also called a Value. A Field can include an appropriate Value, but does not have to; in that case, a Field is said to be “empty” or “undefined”.

Tables

A Table is a container. It is a collection of Records, every Record of the same Record Type. For example:

	
	Description
	Field Label
	Sample

	Record
	information content #1
	First Name
	George

	
	
	Last Name
	Williams

	Record
	information content #2
	First Name
	Kristy

	
	
	Last Name
	Abercrombie

It is possible (and often preferred) to create more than one Table for Records of the same Record Type, for example:

	
	Record Type Label
	Description
	Table Label

	Table
	Contact
	personal information collection
	Family

	Table
	Contact
	business information collection
	Customers

Collections

A Collection is also a container. It is a collection of Tables or other Collections. It is a cataloging structure analogous to the traditional office filing cabinet. For example:

	
	Record Type Label
	Description
	Collection Label
	Table Label

	Table
	Contact
	personal information collection #1
	Private
	Family

	Table
	Contact
	personal information collection #2
	Private
	Friends

	Table
	Contact
	business information collection #1
	Business
	Customers

	Table
	Contact
	business information collection #2
	Business
	Coworkers

	Information
	

	
	Both Tables and Collections are called Containers, since both are used to contain and categorize information.

	Information
	

	
	In desktop PC terminology, Collections correspond to “directories” and Tables correspond to “documents”. Records in a Table can be thought of as “sentences” in a text document. Fields in a Record can be thought of as “words” in a sentence.

Subcollections

An important concept to understand is that Collections can contain not only Tables, but also nested Collections. Effectively, the Collections-inside-Collections capability allows for an in-depth, tree-like structure of information. For example:

[Home]

├── [Private]

│  ├── [Accounts]

│  │  ├── Banking

│  │  └── Credit Cards

│  │

│  └── [Contacts]

│    ├── Family

│    └── Friends

├── [Business]

│  └── [Contacts]

│    ├── Customers

│    └── Coworkers

Nested Collections, thus Collections-inside-Collections, are also called Subcollections.

Why Even Bother to Define Types?

Most conventional database or spreadsheet software products do not define Types, but only introduce the notion of a manual table. If you want to work with, for example, Contacts, you have to create a manual table with appropriate columns, such as a “First Name”, a “Last Name” and so on. So far the process is analogous to the way easyAsPieDB works, but easyAsPieDB defines a Record Type with Fields, rather than a manual table with columns. A Record Type is used to create a managed Table with Records for that particular Record Type.

If you wish to maintain a secondary list of Contacts with a conventional database or spreadsheet software product, you have to create another manual table and go through the process of adding all the appropriate columns all over again. Not so with easyAsPieDB: since you already defined an appropriate Record Type for Contacts, all you need to do is create a secondary managed Table with the same Record Type. Everything else happens automatically.

Some conventional database or spreadsheet software products do allow a user to predefine a blueprint for a manual table and automatically create new manual tables from such a blueprint. However, what if you need to augment the layout of the information that’s already there, for example by adding a new “Birthday” column to your Contacts? In a conventional database or spreadsheet software product, you need to edit every one of your manual tables one by one to add that new column everywhere. Not so with easyAsPieDB: since you already defined an appropriate Record Type for Contacts, all you need to do is add a new Field to that single Record Type itself. All your managed Tables for that Record Type, even if there is a hundred of them, will be updated automatically.

How easyAsPieDB Works With Information

Searches

A Search is a Record pre-filled by a user that describes a comparison (in other words, a query) against other, existing Records. It is a collection of Fields. Each Field of a Search includes an Operator and a Value. An Operator describes how exactly to perform a comparison. A Value is the content to compare against. For example:

	Field Type
	Operator
	Value
	Description
	Matches

	Date
	Today
	
	test whether a Field matches the current date
	the current date

	Time
	At
	9:00 AM
	test whether a Field is exactly the same as the specified Value
	9:00 AM

	Text
	Matching
	bar
	test whether a Field is exactly the same as the specified Value
	bar

	Text
	Containing
	bar
	test whether a Field includes the specified Value as a substring
	barn, embargo, toolbar, …

	Number
	Greater Than
	100
	test whether a Field is greater than the specified Value
	101, 911, 65535, …

When searching:

	each Field in a Record is compared against a corresponding Field in a Search to determine whether there is a match

	every Field in a Record that is not specified in a Search is ignored

	all Fields in a Record have to match all corresponding Fields in a Search for the entire Record to be considered a match

Templates

A Template is a Record pre-filled by a user, out of which new Records can be created quickly. When creating a new Record from a Template (as opposed to creating a new, blank Record), not only a new Record gets created, but also all the information already available in a Template is automatically copied into the new Record, before that Record is presented to a user for further modification. For example:

	Record Type Label
	Template Label
	Field Label
	Field Type
	Sample

	Time Tracking
	My Typical Workday
	Start Time
	Time
	9:00 AM

	
	
	End Time
	Time
	5:00 PM

	
	
	Break
	Duration
	1h:00m

When creating a new Record for the Time Tracking Record Type, you can either:

	always create a new, blank Record and always enter the “Start Time”, “End Time” and “Break” manually

or:

	create a new Template

	enter the “Start Time”, “End Time” and “Break” manually inside a Template only once

	always create a new Record from a Template and have the “9:00 AM”, “5:00 PM” and “1h:00m” information copied automatically

Templatability

There might be situations when a particular Field in a Record is never particularly useful when creating a Template, since that Field is supposed to always contain unique data. For example:

	Record Type Label
	Field Label
	Sample

	Order
	Order Number
	25703

When each and every Record of the Order Record Type is supposed to have a unique “Order Number”, it is never useful to have a pre-defined “Order Number” copied in automatically.

The Templatability attribute for a Field in a Record Type indicates whether that particular Field is relevant when creating a Template. When marked as “no” (false), a Field is altogether hidden away when creating a Template.

Reports

Please see the “How easyAsPieDB Reports Information” section.

How easyAsPieDB Presents Information

Views

easyAsPieDB presents different Views depending on the nature of information a user is working with at the moment. For example:

	Content
	View

	Tables and Collections
	Containers View

	Record Types and Choice Types
	Types View

	Records
	Records View

Each View consists of a top navigation bar, an item list (or other visual representation of information) in the middle and an optional toolbar at the bottom.

Views of Containers

Containers View

Path

the very first (root) View

Purpose

The Containers View is concerned with multiple Containers: Tables and Collections. It presents a list of available Containers. It allows for information categorization (see “How easyAsPieDB Categorizes Information”).

Actions

Containers

The Containers View supports two distinct modes of operation: the viewing mode and the editing mode. Each mode of operation allows for different actions.

Viewing Mode

	Name
	
	
	Purpose
	Location

	Back
	
	
	move back to the last viewed Collection
	navigation bar

	Edit/Done
	
	
	switch the list of Containers across the viewing mode and the editing mode
	navigation bar

	New
	
	
	
	navigation bar

	
	
	Type
	create a new Record Type
	

	
	
	Collection
	create a new Collection
	

	
	
	Table
	create a new Table
	

	Record Types
	select
	
	present a subsequent Types View and show available Types of information (filtered for Record Types)
	item list

	Choice Types
	select
	
	present a subsequent Types View and show available Types of information (filtered for Choice Types)
	item list

	Collection
	select
	
	drill down into a Collection and show Tables and Collections inside it
	item list

	Table
	select
	
	present a subsequent Records View and show Records inside the Table
	item list

	Home
	
	
	move to the topmost (root) Collection
	toolbar

	Find
	
	
	
	toolbar

	
	
	Text
	find Containers by Text (i.e., Container names or content inside Containers)
	

	
	
	Reset
	reset search, show all Containers
	

Editing Mode

	Name
	
	Purpose

	Delete
	
	delete a Container: a Collection or a Table

	Collection
	select
	present a subsequent Collection View and edit Collection attributes (e.g., a Label)

	Table
	select
	present a subsequent Table View and edit Table attributes (e.g., an icon)

App

	Name
	
	
	Purpose
	Location

	Help
	
	
	
	toolbar

	
	
	User’s Guide
	display a User’s Guide
	

	
	
	Contact Us
	send a message to support
	

	
	
	Rate in the App Store
	rate easyAsPieDB in the App Store
	

	Tools
	
	
	
	toolbar

	
	
	About
	present a subsequent About View and show app version
	

	
	
	Backup
	backup your data to the cloud
	

	
	
	Restore
	restore your data from the cloud
	

	
	
	Synchronize
	synchronize data across multiple devices through the cloud
	

	
	
	Subscriptions
	show license information, purchase extended app functionality
	

	
	
	Settings
	present a subsequent Settings View and customize app settings
	

Collection View

Path

Containers View (the "New" Collection or "Edit" Collection action) >>
 Collection View

See Also

	the “Collections” topic in the “How easyAsPieDB Categorizes Information” section

Purpose

The Collection View is concerned with a single Collection. It presents an editable list of Attributes of a Collection. It allows for Container modification.

Attributes

	Name
	Description

	Label
	a Label to describe a Collection (e.g., “Private”, “Business”, etc.)

	Icon
	an icon to use for a Collection in the Containers View

Table View

Path

Containers View (the "New" Table or "Edit" Table action) >>
 Table View

See Also

	the “Tables” topic in the “How easyAsPieDB Categorizes Information” section

Purpose

The Table View is concerned with a single Table. It presents an editable list of Attributes of a Table. It allows for Container modification.

Attributes

	Name
	Description

	Label
	a Label to describe a Table (e.g., “Family”, “Customers”, etc.)

	Record Type
	a Record Type for Records stored in a Table - present a subsequent Type picker View and show a list of all available Record Types (e.g., Contact, Customer, Order, etc.)

	Icon
	an icon to use for a Table in the Containers View

	Information
	

	
	When defining a Table, only Record Types can be used for its Type. Other groups of Types (Value Types, Choice Types and Appliance Types) are not available in the Type picker View, since Tables are supposed to store entire Records only. However, Records can further include individual Values, Choices and Appliances inside them.

Views of Types

Types View

Path

Containers View (the "Record Types" or "Choice Types" action) >>
 Types View

Purpose

The Types View is concerned with multiple Types: Record Types and Choice Types. It presents a list of available Types. It allows for information definition (see “How easyAsPieDB Defines Information”).

Actions

The Types View supports only one mode of operation: the editing mode. Editing can occur across two groups of Types: Record Types and Choice Types.

Editing Mode

	Name
	
	Purpose
	Location

	New
	
	create a new Type for the current Type group: a Record Type or a Choice Type
	navigation bar

	Record/Choice
	
	switch the list of Types across Type groups: Record Types and Choice Types
	segmented control

	Delete
	
	delete a Type: a Record Type or a Choice Type
	item list

	Record Type
	select
	present a subsequent Record Type View and edit Record Type attributes (e.g., Fields)
	item list

	Choice Type
	select
	present a subsequent Choice Type View and edit Choice Type attributes (e.g., Alternatives)
	item list

	Information
	

	
	To create a new Table for a particular Record Type (as opposed to creating a new Record Type), use the “New >> Table” action in the Containers View and select the desired Record Type for the new Table’s “Record Type” attribute.

Record Type View

Path

Containers View (the "Record Types" action) >>
 Types View (the "Record" group, the "New" or "Edit" action) >>
 Record Type View

See Also

	the “Record Types” topic in the “How easyAsPieDB Defines Information” section

Purpose

The Record Type View is concerned with a single Record Type. It presents an editable list of Attributes of a Record Type. It allows for information definition.

Attributes

	Name
	Description

	Label
	a Label to describe a Record Type (e.g., Contact)

	Fields
	present a subsequent Record Type Fields View and show the Fields defined for a Record Type

	Display As
	the Field to use when displaying a child Record inside a parent Record (e.g., a “Last Name” for a Contact displayed inside a Time Tracking ticket)

Record Type Fields View

Path

Containers View (the "Record Types" action) >>
 Types View (the "Record" group, the "New" or "Edit" action) >>
 Record Type View (the "Fields" attribute) >>
 Record Type Fields View

See Also

	the “Record Types” topic in the “How easyAsPieDB Defines Information” section

Purpose

The Record Type Fields View is concerned with multiple Fields of a Record Type. It presents an editable list of Fields of a Record Type. It allows for information definition.

Actions

	Name
	
	Purpose
	Location

	New
	
	present a subsequent Record Type Field View and create a new Field for a Record Type
	navigation bar

	Field
	select
	present a subsequent Record Type Field View and edit Field attributes (e.g., a Label) for a Record Type
	item list

Record Type Field View

Path

Containers View (the "Record Types" action) >>
 Types View (the "Record" group, the "New" or "Edit" action) >>
 Record Type View (the "Fields" attribute) >>
 Record Type Fields View (the "New" or "Edit" action) >>
 Record Type Field View

See Also

	the “Record Types” topic in the “How easyAsPieDB Defines Information” section

	the “Templates” topic in the “How easyAsPieDB Works With Information” section

Purpose

The Record Type Field View is concerned with a single Field of a Record Type. It presents an editable list of Attributes of a Field. It allows for information definition.

Attributes

	Name
	Description

	Label
	a Label to describe a Field (e.g., a “First Name” in a Contact)

	Type
	a Type stored in a Field - present a subsequent Type picker View and show a list of all available Types (Value Types, Choice Types, Record Types, Appliance Types, etc.)

	Templatable
	an indicator whether a Field should be available when creating a Template

Choice Type View

Path

Containers View (the "Choice Types" action) >>
 Types View (the "Choice" group, the "New" or "Edit" action) >>
 Choice Type View

See Also

	the “Choice Types” topic in the “How easyAsPieDB Defines Information” section

Purpose

The Choice Type View is concerned with a single Choice Type. It presents an editable list of Alternatives of a Choice Type. It allows for information definition.

Attributes

	Name
	Description

	Label
	a Label to describe a Choice Type (e.g., a Credit Card)

	Alternatives
	present a subsequent Choice Type Alternatives View and show the Alternatives defined for a Choice Type (e.g., “VISA”, “Mastercard”, etc.)

Views of Records

Records View

Path

Containers View (select a Table) >>
 Records View

Purpose

The Records View is concerned with multiple Records. It presents a list of Records available in a Table. It allows for information search and review.

Actions

	Name
	
	
	Purpose
	Location

	New
	
	
	create a new, empty Record
	navigation bar

	Record
	select
	
	present a subsequent Record View and preview the chosen Record
	item list

	Find
	
	
	
	toolbar

	
	
	Text
	find Records by Text
	

	
	
	Date Range
	find Records by date range
	

	
	
	References To…
	find Records that reference (point to) a particular Record
	

	
	
	Reset
	reset search, show all Records
	

	Searches
	
	
	present a subsequent Searches View and show a list of Searches
	toolbar

	Templates
	
	
	present a subsequent Templates View and show a list of Templates
	toolbar

	Reports
	
	
	present a subsequent Reports View and show a list of Reports
	toolbar

	Share
	
	
	
	toolbar

	
	
	Publish (HTML)
	render Records in the HTML format and Open (view) or Save
	

	
	
	Export (CSV)
	convert Records to the CSV format and Open (view) or Save
	

	
	
	Import (CSV)
	convert data in the CSV format to Records
	

	Options
	
	
	present a subsequent Options View and customize View display options
	toolbar

	Information
	

	
	To edit or delete an existing Record, either: 1.) use the swipe-from-right-to-left gesture on a particular Record along with the revealed “Edit” or “Delete” actions, or: 2.) select a Record in the Records View list to open it in a subsequent Record View and use the “Edit” or “Delete” actions in the bottom toolbar.

Record View

Path

Containers View (select a Table) >>
 Records View (select a Record) >>
 Record View

See Also

	the “Records” topic in the “How easyAsPieDB Categorizes Information” section

Purpose

The Record View is concerned with a single Record. It presents a read-only list of Fields available in a Record. It allows for information preview.

Actions

	Name
	
	Purpose
	Location

	Edit
	
	present a subsequent Fields View and show editable Fields of a Record
	navigation bar

	Duplicate
	
	duplicate a Record
	toolbar

	Delete
	
	delete a Record
	toolbar

	Move Previous
	
	show the previous Record in the current Table
	toolbar

	Move Next
	
	show the next Record in the current Table
	toolbar

	Options
	
	present a subsequent Options View and customize View display options
	toolbar

Fields View

Path

Containers View (select a Table) >>
 Records View (select a Record) >>
 Record View (the "Edit" action) >>
 Fields View

See Also

	the “Records” topic in the “How easyAsPieDB Categorizes Information” section

Purpose

The Fields View is concerned with multiple Fields of a Record to be modified. It presents an editable list of Fields available in a Record. It allows for information preview or modification.

Depending on the Type of a Field, the Fields View allows for immediate, inline information editing (e.g., for Text) or will present a subsequent Field View for information modification (e.g., a calendar for a Date).

Actions

	Name
	
	Purpose
	Location

	Field
	select
	present a subsequent Field View and show the relevant Value of a Field
	item list

Field View

Path

Containers View (select a Table) >>
 Records View (select a Record) >>
 Record View (the "Edit" action) >>
 Fields View (select a Field) >>
 Field View

See Also

	the “Records” topic in the “How easyAsPieDB Categorizes Information” section

Purpose

The Field View is concerned with a single Field of a Record to be modified. It presents an editable View of a Field. It allows for information modification.

Depending on the Type of a Field, the Field View shows information-specific View and offers content-specific actions. For example:

	Field Type
	View
	Sample Action

	Date
	a calendar
	set to today’s date

	Image
	an image preview
	take a photo with a built-in camera

	Reference
	a list of Records available to be selected
	select a Record to reference

Actions

	Name
	
	Purpose
	Location

	Clear
	
	clear the current Value of a Field
	toolbar

Views of Resources

Resources View

Path

Containers View (select a Table) >>
 Records View (select the Find >> Advanced, Templates, or Reports action) >>
 Resources View

See Also

	the “Searches” topic in the “How easyAsPieDB Works With Information” section

	the “Templates” topic in the “How easyAsPieDB Works With Information” section

	the “Reports” topic in the “How easyAsPieDB Works With Information” section

Purpose

The Resources View is concerned with multiple Resources: Searches, Templates, or Reports. It presents a list of available Resources. It allows for information utilization.

Actions

The Resources View supports two distinct modes of operation: the viewing mode and the editing mode. Each mode of operation allows for different actions.

Viewing Mode

	Name
	
	
	Purpose
	Location

	Close
	
	
	close the View
	navigation bar

	Edit/Done
	
	
	switch the list of Resources across the viewing mode and the editing mode
	navigation bar

	New
	
	
	
	navigation bar

	
	
	Searches
	create a new Search
	

	
	
	Templates
	create a new Template
	

	
	
	Reports
	create a new Report
	

	Resource
	select
	
	
	item list

	
	
	Searches
	execute a Search, go back to the previous Records View and show matching Records
	item list

	
	
	Templates
	copy a Template into a new Record, present a subsequent Fields View and show editable Fields of the new Record
	item list

	
	
	Reports
	generate a Report from all Records in the previous Records View and show it in a subsequent Report View
	item list

Editing Mode

	Name
	
	Purpose
	

	Delete
	
	
	delete a Resource: a Search, a Template, or a Report

	Resource
	select
	
	

	
	
	Searches
	present a subsequent Search View and edit Search attributes (e.g., a Label)

	
	
	Templates
	present a subsequent Template View and edit Template attributes (e.g., a Label)

	
	
	Reports
	present a subsequent Report View and edit Report attributes (e.g., a Label)

How easyAsPieDB Reports Information

To generate a Report, choose the “Bar Chart” icon in the Records View toolbar.

Reports

A Report presents a tabular View built from information across multiple Records.

A Report is created for all Records currently visible in the Records View. Records View contents can be chosen using broad filters or precise queries (the “Magnifying Glass” icon in the Records View toolbar).

Report Attributes

A Report is defined by a set of attributes.

Fields

A list of chosen Fields of a Record. Each Field corresponds to a column in a Report. For example:

Sample Records:

	
	Field Label
	Sample

	Record #1
	First Name
	George

	
	Last Name
	Williams

	Record #2
	First Name
	Kristy

	
	Last Name
	Abercrombie

A sample report:

	First Name
	Last Name

	George
	Williams

	Kristy
	Abercrombie

Sum Variables

A list of chosen numeric Fields of a Record. Each Field creates a separate Sum Variable. Each Sum Variable is a sum of all Values in one column of a Report. For example:

Sample Records:

	
	Field Label
	Sample

	Record
	Order Number
	1

	
	Amount
	$1.00

	Record
	Order Number
	2

	
	Amount
	$2.00

A sample report with a Sum Variable defined for the “Amount” Field:

	
	Order Number
	Amount

	
	1
	$1.00

	
	2
	$2.00

	Sum Variable
	
	$3.00

A Sum Variable created for the “Amount” Field accumulates all “Amount” Values for all Records processed.

Data Lines

A Yes/No choice that shows or hides individual Data Lines (rows) in a Report. Each Data Line corresponds to one Record. For example:

Sample Records:

	
	Field Label
	Sample

	Record
	Order Number
	3

	
	Amount
	$3.00

	Record
	Order Number
	4

	
	Amount
	$4.00

A sample report with a Sum Variable defined for the “Amount” Field, with Data Lines:

	
	Order Number
	Amount

	Data Line
	3
	$3.00

	Data Line
	4
	$4.00

	Sum Variable
	
	$7.00

A sample report with a Sum Variable defined for the “Amount” Field, but without Data Lines:

	
	Amount

	Sum Variable
	$7.00

Only the Value of a Sum Variable is visible, while all individual Data Lines are hidden.

Groups (Levels 1-5)

A list of chosen Fields of a Record. All Fields together define criteria for a Group, which serves as its unique “signature”. All Records with the same “signature” (thus the same set of matching Fields) are brought together into the same Group. For example:

Sample Records:

	
	Field Label
	Sample

	Record
	Borough
	Manhattan

	
	City
	New York

	
	Country
	USA

	Record
	Borough
	Brooklyn

	
	City
	New York

	
	Country
	USA

	Record
	Borough
	Metro

	
	City
	Albany

	
	Country
	USA

Sample Groups, defined across the “City” and “Country” Fields:

	City
	Country
	Group Signature
	Number of Records

	New York
	USA
	“New York+USA”
	2

	Albany
	USA
	“Albany+USA”
	1

Grouping can be nested at multiple Levels, thus creating Groups and Subgroups. Up to five (5) Levels can be defined.

Group Footers

A Yes/No choice that shows or hides Group Footer rows in a Report. Each unique Group Footer corresponds to one Group. For example:

Sample Records:

	
	Field Label
	Sample

	Record
	Borough
	Manhattan

	
	City
	New York

	
	Country
	USA

	
	Population
	1,628,706

	Record
	Borough
	Brooklyn

	
	City
	New York

	
	Country
	USA

	
	Population
	2,504,701

	Record
	Borough
	Metro

	
	City
	Albany

	
	Country
	USA

	
	Population
	1,170,483

A sample report with a Group defined across the “City” and “Country” Fields, a Sum Variable defined for the “Population” Field, with Group Footers and with Data Lines:

	
	Borough
	City
	Country
	Population

	
	Manhattan
	New York
	USA
	1,628,706

	
	Brooklyn
	New York
	USA
	2,504,701

	Group Footer
	
	New York
	USA
	4,133,407

	
	Metro
	Albany
	USA
	1,170,483

	Group Footer
	
	Albany
	USA
	1,170,483

Report Design

Detail Reports

To create a Detail -style Report, choose one or more Fields to create columns. Set Data Lines to “Yes” to create rows from individual Records. (Sum Variables, Groups and Group Footers are optional.)

Summary Reports

To create a Summary -style Report, choose one or more Sum Variables to create columns. Set Data Lines to “No” to hide data from individual Records. Specify one or more Groups and set Group Footers to “Yes” to create rows from Groups of Records. (Fields are optional.)

Report Styling

The look and feel of a Report can be customized through its “CSS Style” attribute (HTML Cascading Style Sheets). For a list of available CSS properties, have a look at the output produced by the “Default [CSS]” action in the “CSS Style” Field View toolbar.

Common easyAsPieDB Tasks

The goal of this section is to: 1.) create a new Record Type representing a sample Contact, 2.) create a new Table for the Contact Record Type to hold Records, 3.) create a new Record for the Contact Record Type inside the new Table.

Sample “Contact” Record Type

	
	Description
	Field Label
	Field Type
	Sample

	Field
	a first name
	First Name
	Text
	George

	Field
	a last name
	Last Name
	Text
	Williams

	Field
	a date of birth
	Date of Birth
	Date
	January 1, 2024

	Field
	a formatted Social Security number
	Social Security
	Text
	123-45-6789

Create a New Record Type

Before proceeding, make sure to navigate to the Containers View, the very first (root) View within easyAsPieDB.

Step by Step

	
	View
	Action
	Description

	1.
	Containers View
	select the “Record Types” item line in the list
	opens the Types View

	2.
	Types View
	select the “Plus” icon in the navigation bar
	creates a new Record Type

	3.
	Record Type View
	specify the “Label” item, e.g. “Contact”
	stores a name for the new Record Type

	4.
	Record Type View
	select the “Fields” item
	opens the Fields View

	5.
	Fields View
	select the “Plus” icon in the navigation bar
	creates a new Field

	6.
	“New…” View
	select the “Text (Value)” item line in the list
	chooses the Text (Value Type) for the new Field

	7.
	Field View
	specify the “Label” item, e.g. “First Name”
	stores a name for the new Field

	8.
	Field View
	choose the “Save” button in the navigation bar
	

	Repeat steps (5.) to (8.), but with a different Field name in the “Label” item, e.g. “Last Name”.

	Repeat steps (5.) to (8.), but with a different Field name, e.g. “Date of Birth” and a different Value Type, e.g. Date.

	Repeat steps (5.) to (8.), but with a different Field name, e.g. “Social Security” and a different Value Type, e.g. Text.

	
	View
	Action
	Description

	9.
	Fields View
	choose the left arrow (chevron) icon in the navigation bar
	

	10.
	Record Type View
	select the “Display As” item
	opens the Display As View

	11.
	Display As View
	select the “First Name” item line in the list
	closes the View automatically

	12.
	Record Type View
	choose the “Save” button in the navigation bar
	

	13.
	Types View
	choose the “Close” button in the navigation bar
	

A new Record Type has been created. You can now create a new Table to hold Records for the Contact Record Type, as described below.

Create a New Table for a Record Type

Before proceeding, make sure to have already created a new Contact Record Type, as described above.

Step by Step

	
	View
	Action
	Description

	1.
	Containers View
	choose the “Plus” icon in the navigation bar
	creates a new Container

	2.
	“New…” View
	select the “Table” item line in the list
	creates a new Table (vs. a Collection)

	3.
	Record Type View
	select the Contact item line in the list
	closes the View automatically

	4.
	Table View
	enter a name for the Table in the “Label” item, e.g. “Friends”
	

	5.
	Table View
	choose the “Save” button in the navigation bar
	

A new Table has been created. You can now create a new Record inside the new Table, as described below.

Create a New Record for a Record Type

Before proceeding, make sure to have already created a new “Friends” Table, as described above.

Step by Step

	
	View
	Action
	Description

	1.
	Containers View
	select the “Friends” item line in the list
	opens the Table

	2.
	Records View
	choose the “Plus” icon in the navigation bar
	creates a new Record

	3.
	Fields View
	enter a first name in the “First Name” Field, e.g. “George”
	

	4.
	Fields View
	enter a last name in the “Last Name” Field, e.g. “Williams”
	

	5.
	Fields View
	select the “Date of Birth” Field
	opens the Field View

	6.
	Field View
	select a date in a calendar, e.g. “January 1, 2024”
	

	7.
	Field View
	select the left back (chevron) icon in the navigation bar
	

	8.
	Fields View
	enter a Social Security number in the “Social Security” Field, e.g. “123-45-6789”
	

	9.
	Fields View
	choose the “Save” button in the navigation bar
	

A new Record has been created. You can now create a new Report, see “How easyAsPieDB Reports Information”.

Support

For technical support, please visit the R&F Consulting, Inc. web site at http://www.rfcons.com.

Copyright

The information contained in this document represents the current view of R&F Consulting, Inc. on the issues discussed as of the date of publication. Because R&F Consulting, Inc. must respond to changing market conditions, it should not be interpreted to be a commitment on the part of R&F Consulting, Inc., and R&F Consulting, Inc. cannot guarantee the accuracy of any information presented after the date of publication.

This Guide is for informational purposes only. R&F CONSULTING, INC. MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of R&F Consulting, Inc.

R&F Consulting, Inc. may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from R&F Consulting, Inc., the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious, and no association with any real company, organization, product, domain name, email address, logo, person, place or event is intended or should be inferred.

© 2012 R&F Consulting, Inc. All rights reserved.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

EPUB/media/file4.png

EPUB/media/file13.png

EPUB/media/file9.png

EPUB/media/file10.png

EPUB/media/file5.png

EPUB/media/file15.png

EPUB/media/file14.png

EPUB/media/file6.png

EPUB/media/file11.png

EPUB/media/guide-en_US-cover-1000px.png

EPUB/media/file1.png

EPUB/media/file16.png

EPUB/media/file2.png

EPUB/media/file7.png

EPUB/media/file12.png

EPUB/media/file3.png

EPUB/media/file0.png

EPUB/media/file17.png

EPUB/media/file8.png

